3-2 Regularization

Zhonglei Wang WISE and SOE, XMU, 2025

Contents

1. Penalties on parameters

2. Dropout

3. Early stopping

Intuition

- 1. Fully connected neural network often involves too many model parameters
 - Complex models tend to overfit the training data
 - Decrease the generality of the trained model
- 2. Definitely, we can consider a simpler neural network
 - Simpler models may underfit the training data, however
- 3. Thus, we may would like to obtain a kind of less complex model without changing the architecture

Intuition

- 1. In machine learning, regularization
 - usually adds additional terms to the loss function
 - improves generality of the deep learning model
- 2. There exist implicit regularization, including dropout, early stopping, ensembling

Intuition

1. The following image is Figure 9.14 of Prince (2024)

Wang, Z. (WISE & SOE,

Penalties on parameters

1. l_2 penalty

$$\mathcal{J}_2 = \frac{\lambda}{2n} \sum_{l=1}^{L} \|\boldsymbol{W}^{[l]}\|_F^2$$

- λ : hyperparameter
- $\|\mathbf{A}\|_F = (\sum_i \sum_j a_{ij}^2)^{1/2}$: Frobenius norm of a real-valued matrix $\mathbf{A} = (a_{ij})$
- Derivative

$$rac{\partial \mathcal{J}_2}{\partial oldsymbol{W}^{[l]}} = rac{\lambda}{n} oldsymbol{W}^{[l]}$$

• It is similar to ridge regression and is used to control the complexity of the model

Penalties on parameters

1. l_1 penalty

$$\mathcal{J}_1 = \frac{\lambda}{n} \sum_{l=1}^{L} \|\boldsymbol{W}^{[l]}\|_1$$

- Derivative

$$\frac{\partial \mathcal{J}_1}{\partial \boldsymbol{W}^{[l]}} = \frac{\lambda}{n} \operatorname{sign}(\boldsymbol{W}^{[l]})$$

- It is used to
 - control the complexity of the model
 - induce sparsity, which is similar to LASSO

Remarks

- 1. We only implement l_2 or l_1 penalty on the weight terms $\{W^{[l]}: l=1,\ldots,L\}$
 - By implementing, we mean that the l_2 or l_1 penalty is directly added on the original cost function
 - We leave the bias terms $\{\boldsymbol{b}^{[l]}: l=1,\ldots,L\}$ unpenalized
- 2. We "misuse" $||A||_1$ to denote the summation of absolute values of elements in A
 - More generally, $\|A\|_1 = \max_j \sum_i |a_{ij}|$ denotes the maximum column summation of absolute elements

Dropout

- 1. Commonly used regularization during the training step
 - Randomly remove neurons in each hidden layer
 - If a neuron is removed, its activated value is set to be 0
 - Removal is done for each training example individually
- 2. Improves the robustness

Dropout

- 1. For actiavted values of each training exampling in the lth layer (l = 1, ..., L 1)
 - Set the dropout rate to be $p^{[l]}$
 - Randomly assign them to be 0 using probability $p^{[l]}$
 - Need to rescale the remainings by $(1-p^{[l]})^{-1}$ to compensate information loss
- 2. Dropout is implemented using a mask matrix for each layer

Dropout

Input layer

1st hidden layer

2nd hidden layer

Output layer

Dropout -- training procedure

- 1. Let $M^{[l]} \in \{0,1\}^{n \times d^{[l]}}$ be a mask matrix
 - Each element of $M^{[l]}$ is a Bernoulli random variable with success probability $1 p^{[l]}$
- 2. Forward propagation

$$oldsymbol{A}_d^{[l]} = rac{oldsymbol{A}^{[l]} \circ oldsymbol{M}^{[l]}}{1 - p^{[l]}}.$$

- 3. Backpropagation: as usual
 - No additional model parameters are introduced for dropout

Dropout -- training procedure

- 1. Dropout is multiplying Bernoulli random noise to the neural network
- 2. Generally, we can add or multiply other noise to the neural network
 - Add noise to the training data
 - Add noise to the weights
 - Perturb the labels

Early stopping

- 1. The performance on the training dataset improves as training procedure precedes
- 2. It may overfit the training dataset
 - The performance on the validation/test dataset may not always improve
- 3. Early stopping monitors the performance on the validataion set
 - Stop the training if the performance does not improve on the validation set

Ensembling

- 1. To improve generalization of the model, we may
 - Build several models and take their average as the final model
 - For example, using different initializations
 - Use resampling methods to generate different training sets
 - ▶ This method is commonly used to get uncertainty of the deep learning model