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Intuition

1. Fully connected neural network often involves too many model parameters

® Complex models tend to overfit the training data

® Decrease the generality of the trained model
2. Definitely, we can consider a simpler neural network
® Simpler models may underfit the training data, however

3. Thus, we may would like to obtain a kind of less complex model without

changing the architecture



Intuition

1. In machine learning, regularization

® usually adds additional terms to the loss function

® improves generality of the deep learning model

2. There exist implicit regularization, including dropout, early stopping, ensembling



Intuition

1. The following image is Figure 9.14 of Prince (2024)
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Penalties on parameters
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® )\ : hyperparameter
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It is similar to ridge regression and is used to control the complexity of the model



Penalties on parameters
1. [; penalty
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® Derivative
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® Tt is used to

> control the complexity of the model

> induce sparsity, which is similar to LASSO



Remarks

1. We only implement l5 or I; penalty on the weight terms {Wm 1l =15 500 5di}

® By implementing, we mean that the [y or [; penalty is directly added on the original cost function

We leave the bias terms {bm :l=1,...,L} unpenalized

2. We “misuse” ||Al]|; to denote the summation of absolute values of elements in A

® . .
More generally, ||Al; = max E |a;;| denotes the maximum column summation of absolute
X2 1%
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elements



Dropout

1. Commonly used regularization during the training step

® Randomly remove neurons in each hidden layer
® If a neuron is removed, its activated value is set to be 0

® Removal is done for each training example individually

2. Improves the robustness



Dropout

1. For actiavted values of each training exampling in the [th layer (I =1,...,L — 1)

Set the dropout rate to be p!!

Randomly assign them to be 0 using probability p[l]

® Need to rescale the remainings by (1 — p?)~! to compensate information loss

2. Dropout is implemented using a mask matrix for each layer



Dropout
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Dropout -- training procedure

L. et MU {0, 1}”’de be a mask matrix

Each element of M is a Bernoulli random variable with success probability 1 — p[l]

2. Forward propagation
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3. Backpropagation: as usual

® No additional model parameters are introduced for dropout



Dropout -- training procedure

1. Dropout is multiplying Bernoulli random noise to the neural network
2. Generally, we can add or multiply other noise to the neural network

® Add noise to the training data
® Add noise to the weights

® Perturb the labels



Early stopping

1. The performance on the training dataset improves as training procedure precedes

2. It may overfit the training dataset

® The performance on the validation/test dataset may not always improve

3. Early stopping monitors the performance on the validataion set

® Stop the training if the performance does not improve on the validation set



Ensembling

1. To improve generalization of the model, we may
® Build several models and take their average as the final model

> For example, using different initializations

® Use resampling methods to generate different training sets

> This method is commonly used to get uncertainty of the deep learning model



